Towards the Total Synthesis of Saponaceolides: Synthesis of cis-2,4-Disubstituted 3,3-Dimethylmethylenecyclohexanes**

Barry M. Trost,* James R. Corte, and Mark S. Gudiksen

A variety of natural products are characterized by the cyclohexane structural unit 1. For example, the cycloiridals are prized for their fragrance, and they show interesting activities such as potent piscicidal activity.[1] Carotenoids such as sarcinaxanthin also have this core unit.[2] The high cytotoxicity of saponaceolides A-D (2a-d) towards a large number of

tumors focused our interest on the core unit of this family of compounds.^[3, 4] While natural products have both cis and trans 2,4-substitution in 1, all of the above-mentioned compounds show cis substitution. The fact that the cis isomer is the thermodynamically less stable isomer has hampered its access.^[5] A recent report of the synthesis of 2-epi-saponaceolide B highlights this issue^[6] and stimulated us to report our studies directed at this unit in the context of a total synthesis of the saponaceolides.

For a synthesis of the saponaceolides, the cyclohexyl system 3 serves as our target. Traditional strategies to structures like 1 based upon carbonyl chemistry that set the relative stereochemistry by base-catalyzed epimerization invariably led to the trans isomer. [5] Our interest in palladium-catalyzed cycloisomerizations of enynes^[7, 8] led us to consider an alternative strategy to methylenecyclohexanes and raised the question of the geometrical constraints imposed by an intramolecular carbametalation. Simple modeling suggested that the intra-

[*] Prof. B. M. Trost, Dr. J. R. Corte, M. S. Gudiksen Department of Chemistry Stanford University Stanford, CA 94305-5080 (USA)

Fax: (+1)650-725-0002

E-mail: bmtrost@leland.stanford.edu

[**] We thank the National Science Foundation and the National Institutes of Health, General Medical Sciences, for their generous support of our programs. J.R.C. held a NSF predoctoral fellowship and a Veatch Fellowship, The X-ray crystal structure was determined by Dr. Athar Masood in the crystallography laboratory at Stanford University. Mass spectra were provided by the Mass Spectrometry Facility of the University of California-San Francisco, supported by the NIH Division of Research Resources. We are grateful to Prof. Dr. G. Vidari for copies of spectra of the natural product.

Supporting information for this article is available on the WWW under http://www.wiley-vch.de/home/angewandte/ or from the author. molecular carbametalation via conformer 6 [Eq. (1); TBDMS = tert-butyldimethylsilyl] is $2.8 \text{ kcal mol}^{-1} \text{ lower in}$ energy than the alternative reaction leading to the trans product. In principal, this intermediate can be accessed by a cycloisomerization of envne 4 or a Heck-type process with vinyl bromide 5.

Scheme 1 outlines the synthesis of the cyclization precursors 4 (i.e., 12) and 5 (i.e., 13) in racemic form (the latter was

Scheme 1. a) n-C₄H₉Li, THF, -78°C then CH₃COCH₃; b) Red-Al, Et₂O, 0°C; c) Ac₂O, 5% DMAP, (C₂H₅)₃N, RT; d) CH₂(CO₂CH₃)₂, BSA, 5% [Mo(CO)₆], PhCH₃, reflux; e) LAH, THF, 0°C; f) NaH, THF, 55°C then TBDPSCl, RT; g) PCL (Amano), CH2=CHOAc, THF, RT; h) TBDPSCl, imidazole, DMF, 0°C; i) Ba(OH)₂, CH₃OH, RT; j) 5% TPAP, NMO, 3-Å MS, CH₂Cl₂, 0°C; k) CH₂=C=CHMgBr, Et₂O, -78°C; l) TBDMSO- $SO_2CF_3, \quad 2,6\text{-lutidine}, \quad CH_2Cl_2, \quad 0\,^\circ\text{C}; \quad m) \ C_2H_5OH, \quad PPTS, \quad 50\,^\circ\text{C};$ n) $CH_2=C(Br)CH_2Br$, Sn, HBr, Et_2O , H_2O , RT; o) same as (I) then C_2H_5OH , PPTS, $55\,^{\circ}C$; p) TBAF, THF, RT, then CH_3COCH_3 , amberlyst 15-H⁺, RT. DMAP = 4-dimethylaminopyridine, BSA = N,O-bis(trimethylsilyl)acetamide, TBDPS = tert-butyldiphenylsilyl, TPAP = tetrapropylammonium perruthenate, NMO = N-methylmorpholin-N-oxide, PPTS = pyridinium p-toluenesulfonate, TBAF = tetrabutylammonium fluoride.

obtained in enantiomerically enriched form as well). Introduction of the malonate moiety regioselectively by allylic alkylation with acetate 8 takes advantage of the bias of molybdenum catalysts to direct nucleophilic attack towards the more highly substituted allyl terminus; regioisomer 9 is the exclusive product.^[9]

The racemic silyl ether 10d is available directly from the diol 10a by the method of McDougal et al.[10] Enantiomerically enriched monoacetate 10b is obtained by enzymatic transesterification with 86% ee (45% yield, 91% yield based on recovered starting material) with Pseudomonas fluorescens lipase (PFL).[11] With Pseudomonas cepacia lipase (PCL)[12] higher conversions (68 % yield, 94 % yield based on recovered starting material) are obtained, but with a slightly lower ee value (81 % ee). The absolute configuration was established by the known stereochemical preferences of the enzymes employed and verified by correlation with a known compound.^[13] Interestingly, organometallic additions to aldehyde 11 proceeded completely diastereoselectively with allenylmagnesium bromide[14] to give 12 and with tin and 2,3dibromopropene^[15] under Barbier conditions to give 13. The relative configuration in both cases was established by converting the 1,3-diol units into cyclic acetonides (13c in the latter case), and NMR spectroscopy verifies the trans relationship of the two methine hydrogen atoms (for 13c, J =9.2 Hz). This stereochemistry corresponds to a Felkin-Anh mode of addition.[16]

Previous work suggests that the cycloisomerization of substrates like 12 should produce 1,3- rather than 1,4dienes.[7, 17] In contrast to this expectation, palladium-catalyzed cycloisomerization of 12b proceeded to form exclusively the 1,4-diene product, an enol silvl ether, which is directly hydrolyzed to the aldehyde 14 [Eq. (2); dba = dibenzylideneacetone]. Alternatively, cycloisomerization of 12c provides the aldehyde 14 directly as the sole product. In both cases, the product is isolated as a 2:1 mixture in which the major isomer indeed has the desired cis configuration (see below).

To compare the two processes, the corresponding Heck reactions of vinyl bromides 13b and 13c were examined. Cyclization of 13b to 14 proceeded smoothly to generate a poorer 1:1 ratio of the cis:trans products 14 [Eq. (2)].[18] On

the other hand, the rigid acetonide 13 c leads to the cyclization product 16 in a cis:trans ratio as high as 2.4:1. Efforts to further increase this ratio failed. Preparatively, the highest yield (53 %) of the *cis* isomer stemmed from the conditions^[19] 1) 5% [Pd₂(dba)₃]•CHCl₃ 10% Ph₃P, HOAc 12b

illustrated in Equation (3) in which a cis:trans ratio of 2:1 was observed (dppb = 1,4-bis(diphenylphosphanyl)butane, DMA = N, N-dimethylacetamide). Methanolysis of **16** resulted in conversion into 15 a.

To establish the relative configuration, the aldehyde 16 was converted into 17 [Eq. (4)], which corresponds to the righthand portion of deoxysaponaceolide D. X-ray crystallography established the full stereochemistry as depicted. The diol 15a may serve as a general intermediate for the synthesis of

saponaceolides. While saponaceolide D requires retention of both hydroxyl groups, the syntheses of saponaceolides A-C require the removal of the free hydroxyl group from the monosilyl ether 15b. For this purpose, we turned to free radical chemistry [Eq. (5)]. The reaction proceeded unevent-

fully via thionocarbamate 18 to give the saponaceolide intermediate 19.[20] The pure cis isomer can be isolated at the stage of the diol 15a, its monosilyl ether 15b, or the

monoalcohol 19. Practically, the separation was best done with alcohol 19.

The palladium-catalyzed cycloisomerization and Heck reactions described here provide the best route to date for the formation of the requisite cis-3,3-dimethyl-2,4-disubstituted methylenecyclohexyl unit 1 common to many natural products. The unusual nature of this core unit is further illustrated by the completely different regioselectivity, wherein a 1,4- rather than a 1,3-diene was obtained in the cycloisomerization and in the silver-promoted Heck cyclization. The route constitutes a reasonable strategy for the synthesis of cyclohexyl cores that can provide access to all the currently known saponaceolides. Its practicality is highlighted by its use in a successful synthesis of saponaceolide B.^[21]

Received: June 23, 1999 [Z13611 IE] German version: *Angew. Chem.* **1999**, *111*, 3945 – 3947

Keywords: C–C coupling • cyclohexanes • cycloisomerizations • enynes • natural products

- H. Miyake, H. Ito, T. Yoshida, Can. J. Chem. 1997, 75, 734; H. Ito, Y. Miyake, T. Yoshida, Chem. Pharm. Bull. 1995, 43, 1260; F.-J. Marner, W. Krick, B. Gellrich, L. Jaenicke, W. Winter, J. Org. Chem. 1982, 47, 2531; W. Krick, F.-J. Marner, L. Jaenicke, Helv. Chim. Acta 1984, 67, 318.
- [2] O. B. Weeks, A. R. Montes, A. G. Andrewes, J. Bacteriol. 1980, 141, 1272; S. Hertzberg, S. Liaaen-Lensen, Acta Chem. Scand. 1977, 31, 215.
- [3] Z. Pang, K. E. Berquist, O. Sterner, Acta Chem. Scand. 1994, 48, 453;
 C. Geraci, M. Piattelli, C. Tringali, Magn. Reson. Chem. 1991, 29, 603;
 M. De Bernardi, L. Garlaschelli, L. Toma, G. Vidari, P. Vita Finzi, Tetrahedron 1991, 47, 7109;
 M. De Bernardi, L. Garlaschelli, G. Gatti, G. Vidari, P. Vita Finzi, Tetrahedron 1988, 44, 235.
- [4] G. Vidari, G. Lanfranchi, P. Sartori, S. Serra, *Tetrahedron: Asymmetry* 1995, 6, 2977.
- [5] M. Lanz, B. Bartels, H. Pfander, Helv. Chim. Acta 1997, 80, 804; H. Monti, G. Audran, J.-P. Monti, G. Leandri, J. Org. Chem. 1996, 61, 6021; C. Chapius, R. Brauchli, Helv. Chim. Acta. 1993, 76, 2070; J. P. Ferezou, M. Julia, Tetrahedron 1990, 46, 475; C. Nussbaumer, G. Frater, Helv. Chim. Acta 1988, 71, 619; F. Leyendecker, M. T. Comte, Tetrahedron 1987, 43, 85; T. Kawanobe, M. Iwamoto, K. Kozami, M. Matsui, Agric. Biol. Chem. 1987, 51, 791; T. Kitahara, K. Tanida, K. Mori, Agric. Biol. Chem. 1983, 47, 581.
- [6] G. Vidari, N. Pazzi, G. Lanfranchi, S. Serra, Tetrahedron Lett. 1999, 40, 3067.
- M. J. Krische, B. M. Trost, Tetrahedron 1998, 54, 3693; B. M. Trost, Y.
 Li, J. Am. Chem. Soc. 1996, 118, 6625; B. M. Trost, D. L. Romero, F.
 Rise, J. Am. Chem. Soc. 1994, 116, 4268; B. M. Trost, G. J. Tanoury, M.
 Lautens, C. Chan, D. T. MacPherson, J. Am. Chem. Soc. 1994, 116, 4255.
- [8] Review: B. M. Trost, M. J. Krische, Synlett 1998, 1.
- [9] B. M. Trost, M. Lautens, J. Am. Chem. Soc. 1987, 109, 1469; B. M. Trost, M. Lautens, Tetrahedron 1987, 43, 4817.
- [10] P. G. McDougal, J. G. Rico, Y.-I. Oh, B. D. Condon, J. Org. Chem. 1986, 51, 3388.
- [11] Y. Terao, M. Akamatsu, K. Achiwa, Chem. Pharm. Bull. 1991, 39, 823. Also known as lipase PS or lipase P, it is claimed by Amano to be identical to PPS; see R. J. Kazlauskas, A. N. E. Weissfloch, A. T. Rappaport, L. A. Cuccia, J. Org. Chem. 1991, 56, 2656.
- [12] Reviews: Enzyme Catalysis in Organic Synthesis (Eds.: K. Drauz, H. Waldmann), VCH, New York, 1995; T. Itoh, Y. Takagi, H. Tsukube, J. Mol. Catal. B 1997, 3, 261.
- [13] Monoacetate 10b was converted into (R)-2,2-dimethyl-3-hydroxy-methyl-γ-butyrolactone, which was also prepared from known (R)-2-acetoxymethyl-4-penten-1-ol; see K. Tsuji, Y. Tecao, K. Achiwa, Tetrahedron Lett. 1989, 30, 6189.
- [14] H. Hopf, I. Bohm, J. Kleinschroth, Org. Synth. 1981, 60, 41.
- [15] T. Mandai, J. Nokami, T. Yano, Y. Yoshinaga, J. Otera, J. Org. Chem. 1984, 49, 172.
- [16] O. Arjona, R. Perez-Ossorio, A. Perez-Rubalcaba, M. L. Quiroga, J. Chem. Soc. Perkin Trans. 2 1981, 597.
- [17] B. M. Trost, P. A. Hipskind, J. Y. L. Chung, C. Chan, Angew. Chem. 1989, 101, 1559; Angew. Chem. Int. Ed. Engl. 1989, 28, 1502; B. M. Trost, J. Y. L. Cung, J. Am. Chem. Soc. 1985, 107, 4586.

- [18] Conditions analogous to those of Grigg et al.: R. Grigg, P. Stevenson, T. Worakun, J. Chem. Soc. Chem. Commun. 1984, 1073.
- [19] In our case the effect of silver salts on the regioselectivity of the β-hydrogen elimination is opposite that normally observed; see T. Jeffrey, Tetrahedron Lett. 1993, 34, 1133.
- [20] See: D. H. R. Barton, S. W. McCombie, J. Chem. Soc. Perkin Trans. 1 1975, 1574; K. Pankiewicz, A. Matsuda, K. A. Watanabe, J. Org. Chem. 1982, 47, 485.
- [21] B. M. Trost, J. R. Corte, Angew. Chem. 1999, 111, 3947 3949; Angew. Chem. Int. Ed. 1999, 38, 3664 – 3666.

Total Synthesis of (+)-Saponaceolide B**

Barry M. Trost* and James R. Corte

The saponaceolides A–D (1a–d), discovered by Vidari and co-workers from the northern Italian mushroom *Tricholoma saponaceum*,^[1] possess antitumor activity in 60 human cancer cell lines.^[2] They possess several challenging structural

OH

a:
$$R^1 = OH$$
, $R^2 = R^3 = H$

b: $R^1 = R^2 = R^3 = H$

c: $R^1 = R^2 = OH$, $R^3 = H$

d: $R^1 = R^3 = OH$, $R^2 = H$

elements including the unique tricyclic trioxaspiroketal and a *cis* 2,6-disubstituted 1-methylene-3,3-dimethylcyclohexane ring. While a number of synthetic efforts have targeted portions of these structures,^[2, 3] until recently only a synthesis of 2-*epi*-saponaceolide B has appeared, where the difficulties of controlling the ring configuration were highlighted.^[4] We report here our efforts that have culminated in a synthesis of (+)-saponaceolide B (**1b**), a member that exhibits significant activity in four human cancer cell lines—leukemia K-562, nonsmall cell lung NCI-H23, melanoma LOX-IMVI, and SK-MEL-5.^[2]

Scheme 1 illustrates the retrosynthetic analysis into the three subunits **2–4**. The central core unit **3** represents a significant challenge since the *cis* configuration at C2 and C6, which is thermodynamically less stable than the *trans* configuration, has proven difficult to access—a fact emphasized by the reported synthesis of only the 2-*epi* isomer. [4] The accompanying paper describes a synthesis of this unit. [13]

- [*] Prof. B. M. Trost, Dr. J. R. Corte Department of Chemistry Stanford University Stanford, CA 94305-5080 (USA) Fax: (+1)650-725-0002 E-mail: bmtrost@leland.stanford.edu
- [**] We thank the National Institutes of Health, General Medical Sciences, for their generous support of our programs. J.R.C. held a NSF predoctoral Fellowship and a Veatch Fellowship. Mass spectra were provided by the Mass Spectrometry Facility of the University of California-San Francisco, supported by the NIH Division of Research Resources. We are grateful to Prof. Dr. G. Vidari for copies of spectra of the natural product.
- Supporting information for this article is available on the WWW under http://www.wiley-vch.de/home/angewandte/ or from the author.